A Middleware Transparent Approach for Developing
CORBA-based Distributed Applications

Brahmila Kamalakar and Sudipto Ghosh
Department of Computer Science
Colorado State University
Fort Collins CO 80523, USA

{brahmila,ghosh}@cs.colostate.edu

ABSTRACT

Complex distributed applications are developed using a va-
riety of middleware technologies. Design and evolution of an
application and subsequent migration from one middleware
technology to another is cumbersome because of the high
degree of coupling between the design of business function-
ality and middleware functionality. We propose an MDA
compliant middleware transparent software development ap-
proach to address this problem. We encapsulate as generic
aspect models all middleware functionality that would oth-
erwise crosscut elements of business functionality. We bind
these generic aspect models to an application-specific con-
text and map them to code aspects. We weave the code
aspects with the implementation of business functionality
to obtain the complete application. Our approach enables
the reuse of generic middleware aspect models in multiple
applications. Developers can reuse designs and code corre-
sponding to the business functionality and quickly migrate
to new middleware technologies. We illustrate the approach
with a CORBA-based application.

Keywords

CORBA, Model Driven Architecture, OMG, UML, aspect-
oriented software development, distributed computing, mod-
eling and meta-modeling, middleware technologies.

1. INTRODUCTION

The rapid growth of the Internet has resulted in widespread
use of distributed applications that communicate with the
help of middleware. Middleware features are often scattered
across and tangled with modules of system design. In client-
server systems, client and service classes include middleware
functionality that enables clients to access the remote ser-
vices in a transparent manner. In peer-to-peer (P2P) appli-
cations, each peer has middleware functionality that enables
itself to transparently access other peers in the network.

5tk Aspect Oriented Modeling Workshop UML 2004 Lisbon, Portugal

Using current software development techniques, application
design and implementation becomes tightly coupled with
the specific middleware technology that is incorporated into
the application. Even though certain middleware services
may be provided as components (e.g., security), there are
other middleware features (e.g., events and transactions)
that crosscut these components. The crosscutting nature of
middleware makes understanding, analyzing and changing
middleware features difficult. Since businesses need to keep
up with advances in middleware technology, entire applica-
tions need to be redesigned and reimplemented to migrate
from one middleware technology to another.

‘We propose a middleware transparent software development
(MTSD) approach that decouples the design of middleware
specific features from the design of core business function-
ality. The approach uses aspect-oriented modeling and pro-
gramming techniques because they provide the necessary
constructs for encapsulating crosscutting design and code
elements. Software developers design primary models of the
core application functionality. Elements of the application
that are specific to the middleware are modeled separately
as aspects and seamlessly woven into the application later
in the development process. MTSD eases the evolution of
distributed applications, supports easy incorporation of new
middleware technologies, and enables reuse of high-level ap-
plication design and architectures that are independent of
the middleware. MTSD supports the OMG’s MDA initia-
tive. In this paper, we present the MTSD approach and il-
lustrate it with the design and implementation of a CORBA
application.

We summarize related work in Section 2. We provide back-
ground information on CORBA and our modeling notation
in Section 3. We describe the approach in Section 4 and il-
lustrate it with a CORBA example in Section 5. We present
our conclusions and outline directions for future work in Sec-
tion 6.

2. RELATED WORK

Aspect-oriented software development [14, 15] has intro-
duced aspect languages like AspectJ and Aspect C# which
help in abstracting and encapsulating crosscutting concerns
at the programming level. Simmonds et al. [19] captured Jini
middleware details in the form of code aspects. Pichler et
al. [17] demonstrated the use of aspects with the Enterprise
Java Beans container architecture. Zhang and Jacobsen [21]

analyzed the use of aspects in middleware architectures and
quantified crosscutting concerns in the implementations of
middleware applications.

Bussard [2] described the encapsulation of CORBA features
as code aspects and proposed the creation of a library of as-
pects for different CORBA features to ease the development
of CORBA applications. He observed composition problems
when certain kinds of aspects are composed together with
the same application and proposed the definition of another
aspect to manage the composition of such aspects. Hun-
leth [13] proposed the creation of an Aspect-IDL for CORBA
to support several new types of AspectJ introductions: in-
terface method and field, interface, super class, structure
field, oneway specifier, and IDL typedefs and enumerations.

Code aspects are usually implemented for a specific appli-
cation and are not reusable. This limitation can be over-
come by describing distributed systems at a higher level of
abstraction. The MDA initiative [18] employs design level
abstraction to describe software systems. In the MDA ap-
proach, the Platform Independent Model (PIM) captures
the functionality and behavior of the application free from
the middleware technology. Integration of middleware tech-
nology specific mappings with the PIMs yields the Platform
Specific Models (PSM).

Clarke et al. [3, 4, 5] use the subject-oriented modeling ap-
proach using composition patterns to capture reusable pat-
terns of cross-cutting behavior at the design level. Each
requirement is treated as a separate design subject. Design
subjects are composed to obtain the complete system design.
Subjects may also be mapped to AspectJ aspects. The ap-
proach has some limitations in the types of compositions
that can be performed.

France et al. [7] propose an aspect-oriented modeling (AOM)
approach in which software designers specify primary models
(base functionality), aspect models (non-orthogonal cross-
cutting functionality) and composition directives to obtain
the integrated design. Cross-cutting design concerns are
captured in aspect models using the Role-Based MetaMod-
eling language [6]. France et al. [7, 9, 10, 11] use AOM to
develop applications with security and other dependability
concerns. We adopt the AOM approach for the development
of middleware-based applications.

3. BACKGROUND

In this section, we present the necessary background infor-
mation on CORBA and the Role-Based Metamodeling Lan-
guage (RBML) that is used to specify aspect models.

3.1 CORBA

The Common Object Request Broker Architecture (CORBA)
[1, 12, 16, 20] is an OMG standard for open distributed ob-
ject computing. CORBA enables communication between
applications irrespective of the type of programming lan-
guage and hardware platform used. The object request bro-
ker (ORB) provides a mechanism for transparently convey-
ing client requests to service object implementations in het-
erogeneous distributed environments. When a client invokes
an operation, the ORB locates the object implementation,
delivers the request to the object, and returns the response

to the client. The ORB is also responsible for parameter
marshaling, fault recovery and security.

Developers use the CORBA interface definition language
(IDL) to describe the interfaces of distributed objects that
are implemented in a programming language, such as Java,
C++, or Smalltalk. Language mappings defined for each
programming language specify how the IDL interfaces are
mapped to constructs of the programming language. The
CORBA IDL compiler converts the interface definitions in
the IDL to the stubs and skeletons in the target program-
ming language. Stubs and skeletons facilitate location trans-
parency. The object adapter assists the ORB with delivering
requests to the server object implementations. It also acti-
vates and deactivates servant objects and links them with
the ORB. The Portable Object Adapter (POA) is a server
side component that allows the construction of CORBA
server applications that are portable across ORB implemen-
tations.

In our work, we use the JacORB 1.4.1 implementation of
CORBA for the Java programming language. In JacORB,
the following Java interfaces and classes are generated for
any interface named Interface Type:

1. InterfaceType.java : This contains the declaration of
the methods in the interface.

2. InterfaceTypeHolder.java : This provides support to
handle the IDL inout, and out parameters.

3. InterfaceTypeHelper.java : This contains various static
methods for type-specific operations such as the nar-
row method, which narrows object references of type
CORBA.Object to the specific interface type.

4. InterfaceTypePOA java : This is the skeleton class.

5. InterfaceTypeStub.java : This contains the stub code
to create a client side proxy for the object implemen-
tation.

6. InterfaceTypeOperations.java, InterfaceTypePOATie.java

: These are used for the CORBA Tie mechanism on
the server side.

There are two ways of associating an object implementa-
tion class (Interface TypeImpl) with a skeleton class. One is
by using inheritance, with the POA skeleton class. The
implementation class extends the servant base class (In-
terface TypePOA). This is the approach used in the paper.
The other is by using delegation, which requires the Inter-
faceTypePOATie and Interface TypeOperations classes. The
delegation approach is used when the implementation class
needs to inherit from more than one class. The implementa-
tion class in this case implements Interface Type Operations.

For any CORBA application, the IDL interface, the object
implementation class, the main server class, and the main
client class are implemented by the application developer.
The object implementation class contains the method im-
plementations of the interfaces in the IDL. The server class
initializes the environment, creates the implementation ob-
ject, makes it available to clients, and listens for events. The
client requests services by invoking methods defined in the
IDL on the service objects. All the entities that need to
be developed by the application developer are coupled with
CORBA specific details. Our approach is directed at decou-

pling these middleware concerns from the core functionality
of the application.

3.2 Role Based Meta-Modeling Language

We treat a design aspect model as a pattern that character-
izes a family of design solutions for a crosscutting feature.
We use the RBML to specify families of UML models. The
RBML defines a sub-language of the UML and provides a
pattern specification notation which is used to describe the
middleware design aspect models. An RBML specification is
a structure of roles, where a role defines properties that must
be satisfied by conforming UML model elements. The pat-
terns described in this paper consist of the following RBML
specifications:

1. A Static Pattern Specification (SPS) that characterizes
conforming class diagrams.

2. A set of Interaction Pattern Specifications (IPSs) that
characterize conforming interaction diagrams.

A pattern’s SPS defines a family of conforming UML class
diagrams and the IPS defines a family of conforming UML
sequence diagrams. Details of the RBML notation can be
seen in France et al. [6].

3.2.1 Static Pattern Specification:

An SPS consists of classifier and relationship roles, where a
classifier role is connected to other classifier roles by rela-
tionship roles. Properties in a classifier role are expressed in
three forms:

1. StructuralFeature roles specify structural features of
conforming classifiers. A structural feature can be an
attribute. StructuralFeature roles can be associated
with constraint templates that are used to produce
OCL constraints associated with conforming structural
elements.

2. BehavioralFeature roles specify behavioral features of
conforming classifiers. A behavioral feature can be im-
plemented by one or more operations. BehavioralFea-
ture roles can also be associated with constraint tem-
plates that are used to produce operation specifications
associated with conforming operations.

3. Metamodel-level constraints are well-formedness rules
that restrict the form of conforming model elements.

Figure 1(a) shows a partial SPS for a variant of the Observer
design pattern [8]. This pattern specifies one or more QOb-
server classes and one or more Subject classes in a conform-
ing class diagram such that each Observer class is associated
with exactly one Subject class, and vice versa.

The “|” is used to indicate roles in RBML specifications.
The SPS shown in Figure 1(a) consists of two class roles,
Subject and Observer, that are connected by an association
role observes. Each role in an SPS can be associated with a
binding multiplicity that restricts the number of conforming
elements that can be bound to the role in a conforming
model.

A class that conforms to the Subject role can have one or
more structural features that conform to the SubjectState

Class Role 1%
ISubject

ISubjectState: DataType 1..*

|Attach(lo:IObserver) 1..*

ISub 1..*

Association Role
|Observes

10bs 1..1

Class Role 1.*
|Observer

|ObserverState: DataType 1..1

|Update(ls:ISubject) 1..1

(a) Observer SPS

INotifyInteraction 1..*

Is:ISubject

Notify() L

Ioup<k=i..NumOI‘Observers>)
|

lo[k]:IObserver

|Update (Is)

!
|
|

Ist := IGetState() |
)
)
|
|

(b) Observer IPS

Figure 1: A Variant of the Observer Pattern speci-
fied in RBML.

role and one or more behavioral features that conform to the
Attach role. The association role Observes specifies associ-
ations between Subject and Observer classes. Each end of
an association role has an association-end role. The binding
multiplicity on the Obs association-end role (1..1) specifies
that a conforming Observer class must be part of only one
Observes association. However, the binding multiplicity on
the Sub association-end role (1..*) specifies that a conform-
ing Subject can be part of one or more Observes association.

3.2.2 Interaction Pattern Specifications:

IPSs are used to define interactions between pattern par-
ticipants. An interaction role is a structure of lifeline and
message roles. Each lifeline role is associated with a classi-
fier role in an SPS: a participant that plays a lifeline role is
an instance of a classifier that conforms to the classifier role
in the SPS. A message role is associated with a behavioral
feature role in an SPS: a conforming message specifies a call
to an operation that conforms to a behavioral feature role.
Figure 1(b) shows the IPS describing the pattern of inter-
actions that take place as a result of invoking a subject’s
Notify operation. In the figure, the lifeline role |s : |Subject
represents instances of a class that conforms to the classifier
role Subject in Figure 1(a) and the message role Update rep-
resents asynchronous calls to operations that conform to the
feature role Update. The Notify behavior results in calls to

operations that conform to the Update role for each observer
associated with the subject. Each Observer then calls the
operation that conforms to the GetState role in the subject.
The behavioral roles GetState and Notify are not shown in
the SPS.

The loop structure shown in Figure 1(b) allows one to spec-
ify iterative behavior in a concise manner. The lifeline la-
beled o[k] represents the k" observer attached to the sub-
ject.

3.2.3 Obtaining Conforming Models from the SPS
and IPS:

This process involves binding application-specific model el-
ements and roles. Figure 2 shows part of a model obtained
this way from the Observer pattern described in Figure 1.

Kiln

temp:Int
pressure:Int

attachTempObs(o:TempObs)
attachPressObs(o:PressureObs)

1.1 1.1

obsPress obsTemp

%
*

PressureObs TempObs

currPressure:Int currTemp:Int

updatePressure(k:kiln) updateTemp(k:kiln)

(a) Conforming class diagram

sd KilnInteraction

notifyObs() \
d

loop<k= 1..NumOfObservers>
]

t[k]:TempObs

updateTemp(s)

j
|
|

st := getKilnTemp() i
)
\
|
|

(b) Conforming sequence diagram

Figure 2: Conforming UML Diagrams for the Ob-
server Pattern.

The class diagram shown in Figure 2(a) describes a system
in which a kiln sensor records the kiln’s temperature and
pressure. The sensor is linked to temperature and pressure
observers that monitor kiln temperature and pressure. The
SubjectState role binding multiplicity allows one or more
model elements to be bound to it. This role is bound to
two attributes, temp and pressure. The binding multiplicity
associated with the Sub association-end can be associated
with a class that conforms to the Subject role. The two
association-ends attached to the Kiin class are bound to the
Sub role.

The sequence diagram shown in Figure 2(b) is obtained by
binding model elements representing kiln system concepts
to roles in the observer IPS. One sample sequence diagram
that conforms to the NotifyInteraction IPS is shown.

4. OVERVIEW OF THE MIDDLEWARE

TRANSPARENT APPROACH

The MTSD approach is illustrated in Figure 3. In this ap-
proach, the application developer models the application
free from middleware concerns in a Middleware Transpar-
ent Design (MTD) model. The MTD model contains UML
class diagrams and interaction diagrams. Other views (e.g.,
statecharts and activity diagrams) may also be used. In the
MDA terminology, the MTD is the PIM.

Middleware specific features are localized in an aspect model.
Generic aspect models in the form of aspect libraries are pro-
vided by the middleware platform vendor. These models are
described using the RBML in terms of SPSs and IPSs. There
is one aspect model for each feature (e.g., connectivity, di-
rectory service, security, and replication). In this paper, we
illustrate the generic aspect model for CORBA connectivity
in Section 5.

Generic Generic Generic
Middleware| | Middleware Middleware
Aspect Aspect Aspect
Model - 1 Model -2 Model —n
MTD Bind Bind | Bind
Model
Context Context Context
Specific Specific Specific
Middleware| | Middleware Middleware
Aspect Aspect Aspect
Implement Model - 1 | | Model - 2 Model - n

| |

[e | []
) i)

Code Code Code
Enhance Aspect — 1 Aspect —2 Aspect —n

Weave

Enhanced

MTD
Implementation

Complete
Application

Figure 3: The MTSD Approach.

The application developer specifies the bindings from the
generic aspect models to the application context and gener-
ates the context-specific aspect models. The generation can
be automated in part; it still requires binding information
as input from the application developer.

These models are implemented in an aspect language (cur-
rently in AspectJ). The developer transforms an aspect model
to code aspects with the help of mappings that convert as-
pect model constructs to AspectJ constructs.

The application developer implements the MTD model. The
MTD implementation then needs to be converted into an
Enhanced MTD implementation to make it ready for aspect
weaving for a specific middleware platform. Different mid-
dleware platforms need different application architectures.
For example, Jini requires that a proxy object be imple-
mented by the developer. The code for the proxy object is
usually written as a Java inner class. Java RMI requires
proxy stubs to be automatically generated from the server
implementation. The client implementation in the MTD
does not possess knowledge about the nature of proxies and
assumes that the server object is local. Thus, the client (and
the server in some cases) may need to be modified to adapt
them to the middleware platform used in the application.
We have automated the enhancement process for CORBA
and Jini. We are investigating if the enhancement can be
automated for other middleware platforms. The enhanced
MTD implementation is woven with code aspects using the
AspectJ compiler.

The generic aspect models can be reused to develop other
applications. The mappings from the context-specific aspect
models to code aspects in AspectJ are described in terms of
generic aspect models and AspectJ constructs. Thus, these
mappings can also be implemented in a tool and reused.
The mappings defined to enhance an MTD implementation
and convert it into a form required for CORBA compli-
ance are also reusable and can be implemented in a tool.
The MTD models and implementations can be reused with
aspects for other middleware technologies when migrating
from one middleware technology to another.

5. MTSD FOR CORBA

We illustrate our MTSD approach by incorporating CORBA
connectivity into a simple HelloWorld application. Connec-
tivity between the client and the service object is achieved
by using the Interoperable Object Reference (IOR) of the
service object. There are three ways to obtain the IOR:

1. string_to_object: Sometimes, the IOR is available in
the form of a string (stringified IOR) and stored in
a file. If the client can obtain the stringified IOR, it
invokes this call to convert it into an IOR.

2. resolve_initial_references: This call returns the IORs of
pre-defined service objects, such as the Naming Service
and RootPQA. For example, to use the RootPOA, the
client gets its reference from the ORB by invoking
resolve_initial references(‘ ‘RootPOA’’).

3. resolve: With the reference of the naming service, a
client can look up the IOR of a required service.

In this paper, we use option 2 to get the RootPOA and
option 1 to get the IOR from its stringified form.

5.1 MTD for the HelloWorld Application

The MTD in Figure 4 describes the functionality of a simple
application using a UML class diagram. The MTD contains
a Java server class called Hello WorldServer that implements
an interface called HelloWorldInterface. This interface con-
tains a method, hello(), which returns the string message
“Hello World”. The Java client class, Hello WorldClient, in-
vokes the hello() method on the server.

<<interface>>
HelloWorldInterface

HelloWorldClient

String hello()

HelloWorldServer

String hello()

Figure 4: MTD for the HelloWorld Application.

Class Role 1.*

Class Role
iClient IORB

bllinit(largs:DataType, Iproperties:DataType):IORB 1..1
bl IgetServiceObject() : lInterfaceType 1..1
b3lobject_to_string(lobj: CORBA.Object):DataType 1..1

1.#|ICD 1.*| ICB

1l 1cA N b4lstring_to_object(IservStr:DataType):CORBA.Object 1..1
\; L] bsirun() 1.1

b2lresolve_initial_references(IservTypeStr:DataType):CORBA.Object 1..1

Association Role |OA'

IC1iORB L. 108

Association Role

1.
[CliInterface Class Role

IInterface TypeImpl

Class Role
IPOAHelper

1.

1

ITA| Classifier Role || | bllrequestO) 1.

bllnarrow(lobj:CORBA.Object):[POA 1..1

lInterfaceType

1%

ISerORB, 1..%| IPHA
Association Role

bllrequest() 1..*
Dependency Role

Association Role

Association Role ISerInlmp 1|ISA ISerPOAHelper
IClilnterHelper Class Role 1.+
. IServer !
Dependency Role L C]“@\ss %nle POA b
IInterInterHelper nterfaceType! bllinit() 1..1 Dependency Role
IPOAPOAHelper
Tisc 1TISE p
1.%| THA
Class Rol L Association Role
ass Role L 4
IInterface TypeHelper o ISerPOAMan
Association Role L. IPMB

ISerPOA

bllnarrow(lobj:CORBA.Object):InterfaceType 1..1 Classifier Role

IPOAManager

1.

1

Dependency Role bllactivate() 1..1

IInterImpIPOA

Dependency Role
IPOA "Man

1..*| IPB

Class Role
IPOA

blithe_POAManager():IPOAManager 1..1

b2lservant_to_reference(linTypeImpl:IInterfaceTypeImpl): CORBA.Object 1..1

Figure 5: SPS for CORBA Connectivity using IOR.

5.2 Generic Aspect Model for IOR Mecha-
nism

The generic aspect model for CORBA connectivity using

the IOR mechanism is specified with an SPS (Figure 5) and

two IPSs (Figures 6 and 7).

5.2.1 SPS for CORBA Connectivity:

‘We encapsulated the CORBA specific functionality pertain-
ing to the IOR mechanism as a reusable pattern for use with
any CORBA application. Figure 5 shows the SPS.

The ORB, POA, and POAHelper class roles are played by

classes provided by the CORBA implementation (e.g., JacORB).

The POAManager classifier role is played by an interface,
which is defined by CORBA. The ORB classifier role has
the following behavioral feature roles:

1. init: performs initialization of the ORB.
2. resolve_initial references: returns the references
of predefined services like the naming service.

3. object_to_string: handles the type conversion of the
IOR from
CORBA.Object to a string.

4. string to_object: handles the type conversion of the
IOR from string to CORBA. Object.

5. run: starts the ORB.

The roles for which the instances are provided by CORBA
are described in this paragraph. The POA class role has be-

havioral feature roles servant_to_reference and the POAManager.

The responsibility of the servant_to_reference behavioral

role is to provide the IOR of the service object. The the_POAManager

role is responsible for returning a reference of type POA-
Manager. The POAManager classifier role has the activate
behavioral role to activate the POA. The classifier role POA-
Helper has the behavioral role narrow, which converts an ob-
ject of type CORBA.Object to type POA. The binding mul-
tiplicity on the roles ORB, POA, POAManager and POA-
Helper is 1..1, signifying that a conforming class diagram
can have only one instance of each of these roles.

The roles that need to be merged with MTD-specific classes
at the time of binding are described in this paragraph. The
Interface TypeHelper and Interface TypePOA class roles are
specific to an interface type. The classes conforming to
these roles are generated by the CORBA-IDL compiler from
the interface definition. The Interface TypeHelper class role
is played by the helper class pertaining to the interface
type. It contains the behavioral role narrow. The Inter-
faceTypePOA class role is played by the servant base class
(or skeleton class) pertaining to the interface type. The
Interface Type classifier role is played by the interface gener-
ated by CORBA-IDL compiler. It contains the behavioral
role request, whose instances are the services offered to the
client. Since there can be many operations that play the
role of request, the multiplicity associated with this role is
1..*. The Interface TypeImpl class role is played by the class
which contains the implementation of the service and is pro-
vided by the application developer. The Interface TypeImpl
role implements the instances of the behavioral role request.
The binding multiplicity on the Interface TypeHelper, Inter-
faceTypePOA, Interface Type and Interface TypeImpl roles is
1..*. This signifies that a conforming class diagram can have
any number of instances (at least 1) of each of these roles.

The Client class role is played by classes that request ser-
vices. It contains the getServiceObject behavioral role
that returns a reference to the service object. CORBA-
specific functionality corresponding to the getServiceObject
role is subsequently added to actual clients in the MTD im-
plmentation using AspectJ aspects. The Server class role
is played by the class that creates the IOR of the service
object. It contains the behavioral role init that instanti-
ates the service object and publishes its IOR. The binding
multiplicity on the Client and Server roles is 1..*. This sig-
nifies that a conforming class diagram can have any number
of instances (at least 1) of each of these roles. This is be-
cause a distributed system can have more than one Client
and Server.

We have use-dependency roles between POA Helper and POA,
Interface TypeHelper and Interface Type, POA and POA Man-
ager, Server and Interface TypeImpl, and POA and Interface-

TypeImpl. The corresponding relationships in a conforming
class diagram must be use-dependency relationships.

Behavioral roles are labeled using strings of the form “b#”
(e.g., bl, b2, ...), where “b” denotes behavioral feature
roles. These labels are used in application models to mark
features (possibly more than one) that are bound to each
role.

lorb:|ORB

i
i

i

i | IpoaHelper:IPOAHelper
i

lorb := linit (largs,Iprops)

i
i
| ‘ Ipoa:[POA ‘
i
1 i :
i i
| | IpoaMan:[POAManager |,
i i
i | i
i i
U | ‘
i i
i i
i i
i
D |
i
i

lobj := Iresolve_initial_references(IservTypeStr)

Ipoa := Inarrow(lobj) D

IpoaMan := Ithe_POAManager()

lactivate()

limplObj := <<create>>

!
IservObj := Iservant_to_reference(limplObj)

I
Istr := lobject_to_string(IservObj)

Irun()

Figure 6: Server-side IPS for CORBA Connectivity
using IOR.

lc:IClient

lorb:IORB

liTypeHelper:|InterfaceTypeHelper

lorb := linit (largs,Iprops)

lobj := Istring_to_object(IIORStr) !

i
i
!
| liTypeObyj:lInterfaceType
i - - @
i
i
i
i

liTypeObj := Inarrow (lobj)

Irequest()

Figure 7: Client-side IPS for CORBA Connectivity
using IOR.

5.2.2 IPSs for CORBA Connectivity:

We describe the IPSs that specify the pattern of interactions
taking place as a result of invoking the init operation in the
Server and the getServiceObject operation in the Client.

Figure 6 depicts the details of server side interactions. The
Server class role contains the init role. The lifeline role
|s: |Server represents an instance of a class that con-
forms to the classifier role Server in Figure 5. First, the
Server initializes an instance of the ORB and obtains its
reference. The Server then gets the IOR of the POA in-
stance by invoking resolve_initial_references and nar-
rowing it down. The Server uses the_POAManager to obtain

limplObj:IInterfaceTypelmpl
T

a reference of the POAManager. The Server activates the
POA instance by invoking activate on the POAManager.
The service is instantiated when the Server creates an in-
stance of Interface TypeImpl. The service IOR is obtained
by invoking servant_to_reference on the POA. The IOR
is converted to a string by invoking object_to_string on
the ORB. The Server starts the ORB by invoking run.

Figure 7 shows the details of the getServiceObject role in
the Client class using which the client obtains the IOR of
the required service. The lifeline role |c: [Client repre-
sents an instance of a class that conforms to the classifier
role Client in Figure 5. The client first gets the stringified
IOR (e.g., from a file), then initializes the ORB and ob-
tains its reference. The client converts the stringified IOR
to type CORBA.Object by invoking string to_object and
narrows it to the appropriate reference type using narrow in
the Interface TypeHelper.

5.3 Context-specific Aspect Model for the IOR

Mechanism

The IOR pattern is used to produce a set of UML dia-
grams for a specific application context. Figure 8 shows
the context-specific class diagram obtained from the SPS.
The stereotypes on the diagram elements indicate the SPS
roles they conform to. Table 1 shows how elements are ei-
ther (1) added to the class diagram by stamping them out
from the SPS, or (2) obtained by explicitly binding with
existing diagram elements in the MTD class diagram, or
(3) generated by the IDL compiler, and thus, stamped out
or bound to existing diagram elements. In Figure 5, the
binding multiplicity associated with the CB association-end
role indicates that one or more association-ends can be as-
sociated with a class that conforms to the Client class role
in Figure 8. This implies that many client classes (only Hel-
loWorldClass in our example) can be associated with one
service type.

The context-specific interaction diagrams are obtained from
the IPSs by binding appropriate roles to HelloWorld appli-
cation elements. The lifeline and message bindings are the
same as those used to produce the class diagram. The mes-
sage parameters are specified by the developer. Figures 9
and 10 show the sequence diagrams conforming to the IPSs
in Figures 6 and 7 respectively.

5.4 MTD Implementation

A typical Java implementation of the Hello World MTD con-
tains the classes Hello WorldClient and HelloWorldServer.
The HelloWorldServer class implements the methods ex-

posed by Hello WorldInterface. An instance of the Hello World-

Client class gets a reference to a HelloWorldServer and in-
vokes the hello() method on it.

5.5 Mapping Context-Specific Aspect Models
to Code Aspects

Figures 11 and 12 show the implementation of the context-
specific aspect model for the IOR mechanism as code aspects
in AspectJ. We use AspectJ’s join-point and advice mecha-
nism.

The init behavior on the server side is encapsulated in the

orb:ORB
| |
i i
i | | poaHelper:POAHelper
i i
i

orb := init (args,null)

i
[|
i
obj := resolve_initial_references("RootPOA") I poa:POA hwImpl:HelloWorldImpl
I 3
m ‘ ‘
i

poa := narrow(obj) |
i

D |
D poaMan:POAManager |

i

i

! i

! i

i

L i

i

I

S
“

poaMan := the_POAManager()

activate()

]
I
|
T
I
I
I
I
I
]

hwImpl := <<create>> j

T

I

hw := servant_to_reference(hwImpl}

str := object_to_string(hw)

(]

run() |

| [l

Figure 9: Server-side IOR Sequence Diagram for

HelloWorld.

orb:ORB
i
i
' hwHelper:HelloWorldHelper
I

obj := string_to_object(IORStr) D

|
i
i orb := init (args,null)

!
|
|
|
I | hw:HelloWorld
+ | hw:HelloWorld
|
! !
D |
|
|
|
|
| H
;
|
|
|
|
! |
! |
! |

hw := narrow (obj)

hello()

Figure 10: Client-side IOR Sequence Diagram for
HelloWorld.

init method defined in the ServerAspect. The init method
creates the servant IOR string and stores the IOR in a lo-
cation accessible to the client. CORBA requires the imple-
mentation class to extend the InterfaceTypePOA (skeleton
class). The ServerAspect does this by using AspectJ’s inter-
type declaration “declare parents”. The init method needs
to be called before the main method. Hence, we define an
ezecution primitive pointcut on the execution of main. The
init method is invoked in the before advice associated with
the pointcut.

The transformations required to generate the ServerAspect
are as follows:

1. Import the appropriate packages.

2. Include the appropriate declare parents clause.

3. Define the init method with all the steps shown in
Figure 11.

4. Define the pointcut on the execution of main.

5. Define the associated before advice.

The getServiceObject behavior on the client side is encap-

sulated in another aspect, ClientAspect. The getServiceObject

method in the Hello WorldClient class is responsible for re-

<<Client>>
HelloWorldClient

<<CliORB>>
provides < 1

<<b1>> getServiceObject() : hw: HelloWorld

<<ORB>>
ORB

[[

<<CliInterface>>
provides

A

<<InterfaceType>>
HclloWor]g P

<<bI>>init(args:String[],props:Properties):orb:ORB
<<b2>>resolve_initial_references(servTypeStr:String):obj: CORBA.Object
<<b3>>object_to_string(obj:CORBA.Object):str:String
<<b4>>string_to_object(servStr:String):0bj: CORBA.Object

<<bl>>hello()

<<ClilnterHelper>>
provides

A

<<InterInterHelper>>

i

<<InterfaceTypeHelper>>
HelloWorldHelper

<<bl>>narrow(obj:CORBA.Object):hw:HelloWorld

<<b5>>run()
1
<<InterfaceTypelmpl>>
HelloWorldImpl
<<POAHelper>>
<<bl>>hello() POAHelper
AR <<SerORB>>
" provides <<bl>narrow(obj:CORBA.Object):poa:POA
po v
I
[1 <<SerPOAHelper>> |
I
<<InterfaceTypePOA>> | | ! provides i
HelloWorldPOA b <<SerInlmp>> v <<POAPOAHelper>>
[<<POAManager>> i
' | POAManager 1
I
b <<bl>>activate() i
Lo L | L |
[A
1) I
: <<Server>> 4 : :
' erver provides < | |
! <abl>>init() <<SerPOAMan>> 1 1
! [
! 1* [
! <<POA_Man>> | |
<<InterImplPOA>> ! SPOA>> L
: n b
| I I
I I
1 : Ly
<<POA>>

POA

<<bl>>the_POAManager():poaMan:POAManager
<<b2>>servant_to_reference(inTypeImpl:InterfaceTypeImpl):obj: CORBA.Object

Figure 8: Context-specific IOR Class Diagram for HelloWorld.

Table 1: Bindings for the HelloWorld Class Diagram

[Role | Class diagram element | How to obtain |
POA POA stamp out
the_POAManager the_POAManager stamp out
servant_to_reference servant_to_reference stamp out
POAHelper POAHelper stamp out
narrow narrow stamp out
ORB ORB stamp out
init init stamp out
resolve_initial_references | resolve_initial_references | stamp out
object_to_string object_to_string stamp out
string_to_object string_to_object stamp out
run run stamp out
POAManager POAManager stamp out
activate activate stamp out
Interface TypePOA HelloWorldPOA generate
Interface TypeHelper HelloWorldHelper generate
narrow narrow generate
Interface Type HelloWorld generate
request hello() generate
Interface TypeImpl HelloWorldServer bind
request hello() bind
Client HelloWorldClient bind
getServiceObject getServicelbject stamp out
Server Server stamp out
init init stamp out

turning the servant object reference to the client. In the
MTD implementation, this method is unaware of details

regarding CORBA connectivity. We incorporate CORBA
connectivity by defining a pointcut on the execution of the

package demo.helloworld;

import java.io.*;

import org.omg.CORBA.*;

import org.omg.PortableServer.*;

public aspect ServerAspect {
declare parents: HelloWorldImpl extends HelloWorldPOA;

public void init (String[] arg) throws Exception {
ORB orb = ORB.init(arg, null);
POA poa = POAHelper.narrow(orb.resolve_initial_references ("RootPOA"));
poa.the_POAManager () .activate();
HelloWorldImpl hwImpl = new HelloWorldImpl () ;
org.omg.CORBA.Object obj = poa.servant_to_reference (hwImpl);
FileWriter out = new FileWriter ("ior");
out.write (orb.object_to_string(obj));
out.close () ;
orb.run () ;

}

pointcut serPt (Server s, String[] arg): execution(void Server.main(..))
&& target (s) && args(arg);

before (Server s, String[] arg): serPt(s, arg) {
try{
init (arqg);
} catch(Exception e) {
System.out.println (e);

Figure 11: Server IOR aspect in AspectJ

package demo.helloworld;
import java.io.*;
import org.omg.CORBA.*;
public aspect ClientAspect {
pointcut cliPt (HelloWorldClient ¢, String[] arg): execution (*

HelloWorldClient.getServiceObject (..)) && target(c) && args(arqg);
HelloWorld around(HelloWorldClient ¢, String[] arg): cliPt(c, arg) {
try{

String ior;
ORB orb = ORB.init (arg,null);
ior = new BufferedReader (new FileReader ("ior")) .readLine();
org.omg.CORBA.Object obj = orb.string_to_object (ior);
HelloWorld hw = HelloWorldHelper.narrow (obj) ;
return hw;
} catch (Exception e) {
System.out.println ("Exception" + e);
return null;

Figure 12: Client IOR aspect in AspectJ

// Server.java

package demo.helloworld;
import java.io.*;

public class Server {

public static void main(String[] args)

{1

// HelloWorldImpl.java

package demo.helloworld;

public class HelloWorldImpl ({
public HelloWorldImpl() { }

public String hello() {
return "Hello World !'";

}

// HelloWorldClient.java

package demo.helloworld;
import Jjava.io.*;

public class HelloWorldClient {

public HelloWorld getServiceObject ()

{

HelloWorld hw = (HelloWorld) new HelloWorldImpl () ;

return hw;

}

public static void main(String args([]) {

try {

HelloWorldClient cli = new HelloWorldClient () ;
HelloWorld hw = cli.getServiceObject ();
System.out.println(hw.hello());

} catch (Exception ex) {
System.err.println (ex);

}

Figure 13: Code snippets from the Enhanced Server, Client and HelloWorld Implementation

getServiceObject method with an execution primitive point-
cut. The steps for CORBA connectivity are included in an
around advice associated with the pointcut. The around ad-
vice returns the servant object reference to the client which
calls the hello method on it.

The transformations required to generate the ClientAspect
are as follows:

1. Import the appropriate packages.

[\

3. Define the around advice with steps as shown in Fig-
ure 12.

5.6 Enhancing the HelloWorld MTD Imple-

mentation and Weaving with Aspects
Prior to weaving the MTD implementation with the code
aspects, we need to enhance the MTD implementation to
ensure CORBA compliance. Figure 13 shows the enhanced
MTD implementation.

CORBA requires the declaration of the service interfaces in
an IDL format. Hence, the Java interface written by the de-
veloper needs to be converted to the CORBA IDL format.
The developer specifies the directory structure in which the
IDL file must be placed. An IDL file corresponding to the
Java interface may be generated automatically. On compil-
ing the IDL file with an IDL compiler, the required CORBA
files (HelloWorldHelper, HelloWorldPOA and HelloWorld)
are created.

. Define a pointcut on the execution of getServiceObject.

We rename the service implementation class Hello World-

Server provided by the application developer as Hello WorldImpl.

The clause “implements

HelloWorldInterface” is deleted from the Hello WorldImpl
class because it must now “extend HelloWorldPOA”. This
extension is done in the ServerAspect.

We need to have a dummy getServiceObject operation in
the HelloWorldClient so that the around advice specified in
the ClientAspect can work. This new operation instantiates
a service object and returns a reference of type Interface-
Type. This is the same type as required by the advice. The
operation needs to be called from the client’s main method
for the advice to execute once it is woven. In AspectJ, the
behavior specified by the around advice is executed instead
of the original operation, so the behavior of the dummy
getServiceObject operation in the enhanced MTD imple-
mentation has no effect in the woven application.

Finally, the complete application is generated by weaving
the client and server code with the respective aspects.

6. CONCLUSIONS AND FUTURE WORK

This paper presented the MTSD approach for the develop-
ment of CORBA-based distributed applications. We applied
MTSD to incorporate CORBA connectivity into an applica-
tion design that was free from any CORBA-specific design
elements. The design aspects representing the connectivity
feature and the mapping to code aspects can be reused in
other CORBA applications. The primary models of business
functionality can be reused with other middleware technolo-

gies.

We have also successfully applied MTSD to CORBA ap-
plications where the naming service approach is used for
locating services. We have used MTSD with the CORBA
Tie mechanism as well.

Our next step is to apply MTSD to different application
architectures and investigate the effect of using multiple as-
pects with one primary model. We will also extend the
work to generate code mappings for aspect models of other
CORBA features, such as security and fault tolerance. A
comprehensive CORBA aspect library will be created. Fur-
ther investigation will be carried out to apply MTSD to
other middleware technologies. This will help us character-
ize properties of middleware features that make them iso-
latable as aspects. We are also working on the development
of a prototype tool to automate the mapping process.

7. REFERENCES
[1] S. Baker. CORBA Distributed Objects Using Orbiz.
ACM press, Addison-Wesley, USA, 1997.

[2] L. Bussard. Towards a Pragmatic Composition Model
of CORBA Services Based on AspectJ. In Proceedings
of ECOOP 2000 Workshop on Aspects and
Dimensions of Concerns, Sophia Antipolis and
Cannes, France, June 2000.

[3] S. Clarke. “Extending Standard UML with Model
Composition Semantics”. Science of Computer
Programming, 44(1):71-100, July 2002.

[4] S. Clarke, W. Harrison, H. Ossher, and P. Tarr.
Separating concerns throughout the development
lifecycle. In Proceedings of the 8rd ECOOP
Aspect-Oriented Programming Workshop, Lisbon,
Portugal, June 1999.

[5] S. Clarke and J. Murphy. Developing a tool to support
the application of aspect-oriented programming
principles to the design phase. In Proceedings of the
International Conference on Software Engineering
(ICSE ’98), Kyoto, Japan, April 1998.

[6] R. France, D.-K. Kim, S. Ghosh, and E. Song. A
UML-based pattern specification technique. IEEFE
Transactions on Software Engineering, 30(3), March
2004.

[7] R. B. France, I. Ray, G. Georg, and S. Ghosh. An
aspect-oriented approach to design modeling. To be
published in IEE Proceedings - Software, Special Issue
on Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design, to appear, 2004.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing
Series. Addison-Wesley, Reading, MA 01867, 1995.

[9] G. Georg, R. France, and I. Ray. An Aspect-Based
Approach to Modeling Security Concerns. In
Proceedings of the Workshop on Critical Systems
Development with UML, Dresden, Germany, 2002.

[10] G. Georg, R. France, and I. Ray. Designing High
Integrity Systems using Aspects. In Proceedings of the
Fifth IFIP TC-11 WG 11.5 Working Conference on
Integrity and Internal Control in Information Systems
(IICIS 2002), Bonn, Germany, November 2002.

[11] G. Georg, I. Ray, and R. France. Using Aspects to
Design a Secure System. In Proceedings of the
Interational Conference on Engineering Complex
Computing Systems (ICECCS 2002), Greenbelt, MD,
December 2002. ACM Press.

[12] M. Henning and S. Vinoski. Advanced CORBA
Programming with C++. Addison-Wesley, USA, 1999.

[13] F. Hunleth, R. Cytron, and C. Gill. Building
Customizable Middleware Using Aspect Oriented
Programming. In OOPSLA Workshop on Advanced
Separation of Concerns in Object-Oriented Systems,
Tampa, Florida, USA, October 2001.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP ’01), pages
327-353, Budapest, Hungary, June 2001.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented
Programming (ECOOP ’97), volume 1241 of Lecture
Notes in Computer Science, pages 220-242, Jyvaskyla,
Finland, June 1997.

[16] OMG — The Object Management Group. Common
Object Request Broker Architecture CORBA/IIOP 2.6.
OMG, 2002.

[17] R. Pichler, K. Ostermann, and M. Mezini. “On
Aspectualizing Component Models”. Software Practice
and Ezperience, 33(10):957-974, August 2003.

[18] Richard Soley. MDA, An Introduction. URL http://
omg.org/mda/presentations.htm/, 2002.

[19] D. Simmonds, S. Ghosh, and R. B. France.
Middleware Transparent Software Development and
the MDA. In UML 2008 Workshop on SIVOES-MDA,
to appear in Proceedings SIVOES 2003, Electronic
Notes in Theoretical Computer Science, Elsevier, San
Francisco, CA, October 2003.

[20] A. Vogel and K. Duddy. Java Programming with
CORBA. John Wiley and Sons, USA, 1998.

[21] C. Zhang and H.-A. Jacobsen. “Refactoring
Middleware with Aspects”. IEEE Transactions on
Parallel and Distributed Systems, 14(11):1058-1073,
November 2003.

